
Concept Evolution in Deep Learning Training:
A Unified Interpretation Framework and Discoveries

Haekyu Park
Georgia Tech

haekyu@gatech.edu

Seongmin Lee
Georgia Tech

seongmin@gatech.edu

Benjamin Hoover
Georgia Tech

bhoov@gatech.edu

Austin P. Wright
Georgia Tech

apwright@gatech.edu

Omar Shaikh
Georgia Tech

oshaikh@gatech.edu

Rahul Duggal
Georgia Tech

rahulduggal@gatech.edu

Nilaksh Das
Georgia Tech

nilakshdas@gatech.edu

Kevin Li
Georgia Tech

kevin.li@gatech.edu

Judy Hoffman
Georgia Tech

judy@gatech.edu

Duen Horng Chau
Georgia Tech

polo@gatech.edu

ABSTRACT

We present ConceptEvo, a unified interpretation framework for
deep neural networks (DNNs) that reveals the inception and evo-
lution of learned concepts during training. Our work addresses a
critical gap in DNN interpretation research, as existing methods
primarily focus on post-training interpretation. ConceptEvo in-
troduces two novel technical contributions: (1) an algorithm that
generates a unified semantic space, enabling side-by-side compari-
son of different models during training, and (2) an algorithm that
discovers and quantifies important concept evolutions for class pre-
dictions. Through a large-scale human evaluation and quantitative
experiments, we demonstrate that ConceptEvo successfully identi-
fies concept evolutions across different models, which are not only
comprehensible to humans but also crucial for class predictions.
ConceptEvo is applicable to both modern DNN architectures, such
as ConvNeXt, and classic DNNs, such as VGGs and InceptionV3.

KEYWORDS

Interpretation of Concept Evolution in Deep Learning Training
ACM Reference Format:

Haekyu Park, Seongmin Lee, Benjamin Hoover, Austin P. Wright, Omar
Shaikh, Rahul Duggal, Nilaksh Das, Kevin Li, Judy Hoffman, and Duen
Horng Chau. 2023. Concept Evolution in Deep Learning Training: A Unified
Interpretation Framework and Discoveries. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management (CIKM
’23), October 21–25, 2023, Birmingham, United Kingdom. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3583780.3614819

1 INTRODUCTION

Interpreting how Deep Neural Networks (DNNs) arrive at their
decisions has become crucial for instilling trust in the models [43],
debugging them [20], and guarding against potential harms such
as embedded bias or adversarial attacks [8, 36, 59]. As a fundamen-
tal type of DNN, convolutional neural networks have garnered
significant interest in understanding their internal mechanism.
Saliency-based interpretation methods, for example, aim to identify
important image regions for predictions [47, 48]. Concept-based

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0124-5/23/10.
https://doi.org/10.1145/3583780.3614819

interpretation methods identify concepts detected by DNNs, such
as “dog face” concepts shown in Fig 1, and their role in forming
higher-level concepts and predictions [3, 12, 19, 34, 37]. These meth-
ods connect a concept with sets of images or image patches that
explain the concept, using shared visual characteristics among the
images to enhance human understanding of the concept [5, 12, 35].
Neuron-level concept interpretation methods focus on concepts
that elicit strong activation in that neuron [5, 35, 37].

However, existing interpretation approaches mostly focus on
post-training analysis [15, 22], providing limited insights into the
evolution of models during training. Crucially, understanding the
progression of concepts detected by individual neurons, which we
refer to as the neuron’s concept evolution, and its association
with model deficiencies like poor generalizability [18, 23, 58] or
convergence failures [2, 42] remains lacking. Relying solely on
post-training interpretation poses challenges for real-time discov-
ery and diagnosis during training, potentially wasting time and
resources [9, 46], if the training ultimately fails to achieve desired
outcomes. Interpreting the DNN training process also enhances
effective monitoring [1, 25, 60, 62].

To fill these gaps, our work contributes as follows:
1. ConceptEvo, a unified interpretation framework that re-

veals the inception and evolution of concepts during DNN

training (Sec 3), with two novel technical contributions1:
• An algorithm that generates a unified semantic space that
enables side-by-side comparison of different models during
training (Fig 1, 2). ConceptEvo is applicable to both modern
ConvNeXt and classic DNNs like VGGs and InceptionV3.

• An algorithm that discovers and quantifies important concept
evolutions for class predictions (Fig 3).

2. Extensive evaluation (Sec 4). A large-scale human experiments
with 260 participants and quantitative experiments demonstrate
that ConceptEvo identifies concept evolutions that are not only
meaningful to humans but also important for class predictions.

3. Discoveries on model evolution (Sec 4.5). We highlight how
ConceptEvo aids in uncovering potential issues during model
training and provides insights into their causes, such as: (1)
severely harmed concept diversity caused by incompatible hy-
perparameters (e.g., overly high learning rate) as shown in Fig 2b;
and (2) slowly evolving concepts despite rapid increases in train-
ing accuracy in overfitted model as shown in Fig 2c.

1ConceptEvo has been made open source: https://github.com/poloclub/ConceptEvo.

ar
X

iv
:2

20
3.

16
47

5v
4

 [
cs

.L
G

]
 2

2
A

ug
 2

02
3

https://doi.org/10.1145/3583780.3614819
https://doi.org/10.1145/3583780.3614819
https://github.com/poloclub/ConceptEvo

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Park et al.

Figure 1: ConceptEvo creates a unified semantic space that

enables side-by-side comparison of different models dur-

ing training (top: VGG19; middle: InceptionV3; bottom: Con-

vNeXt). ConceptEvo embeds and aligns neurons (dots) that

detect similar concepts (e.g., dog face, circle, car wheel) to

similar locations.

2 RELATEDWORK

Interpreting DNNs After Training. Interpreting fully-trained
DNNs revolves around describing crucial features of models’ behav-
ior. For example, saliency-based methods identify image pixels that
are important for predictions [11, 47–49]. However, these methods
face a challenge as important image pixels may not align with high-
level concepts that are easily understandable to humans [16, 19].
To address this, recent studies have focused on explaining high-
level, human-understandable concepts learned within DNNs and
their relevance to the models’ prediction [13, 14, 17, 19, 33, 55, 61].
For example, feature visualization techniques [56, 57] generate
synthetic images that strongly activate specific neurons, visualiz-
ing detected concepts. ACE [12] discovers important image seg-
mentations, presenting learned concepts that are important for
predictions. Net2Vec [10] encodes individual neurons’ concepts
into vectors by using predefined concept images. MILAN [17] ex-
plains learned concepts through short natural language descriptions.
NeuroCartography [37] visualizes concepts detected by neurons
through encoding the conceptual neighborhood of neurons.

Interpreting DNNs During Training. Several existing studies
that aim to interpret DNNs during training focus on the evolution
of data representations within the models across epochs and how
this evolution influences their downstream performance [6, 39,
50]. DeepEyes [38] examines the evolution of individual neurons’
activation for different classes during training. DGMTracker [25]
analyzes changes in weights, activations, and gradients over time.
Other approaches track the 2D projected evolution of neurons
towards or away from specific labels [24, 41], although this limits
our understanding of learned concepts to the available labels only.
DeepView [60] introduces metrics to estimate whether neurons

Figure 2: ConceptEvo identifies potential training issues.

(a) A well-trained VGG16 shows gradual concept formations

and refinements. (b) A VGG16 suboptimally trained with a

large learning rate, rapidly losing the ability to detect most

concepts. (c) An overfitted VGG16 without dropout layers,

showing slow concept evolutions despite rapid training accu-

racy increases. We abbreviate “top-5 training/test accuracies”

as “train/test acc.”

are evolving sufficient diversity for classification. ConceptEvo
distinguishes itself from the existing approaches by enabling the
comparison of concepts learned by neurons from any layer within

a model and even by neurons from different models.

3 METHOD

3.1 Desiderata of Interpreting Concept

Evolution

D1 General interpretation of concept evolution across dif-

ferent models. Comparing the training of different models
is essential for determining which model is trained better or
which training strategy is more effective [23, 40]. Thus, we aim
to develop a general method that enables side-by-side compar-
ison and interpretation of concept evolution across different
models. (Sec 3.2)

D2 Revealing and quantifying important evolution of con-

cepts.We aim to identify internal changes that significantly
impact the prediction of a specific class, as understanding
the most influential components can lead to effective model
improvements [13]. For example, we seek to determine the
importance of a neuron’s concept evolution, such as the transi-
tion from “brown color” to “brown furry leg” in the prediction
of a “brown bear” class. We aim to automatically discover these
important changes in concepts for class predictions. (Sec 3.3)

Concept Evolution in Deep Learning Training:
A Unified Interpretation Framework and Discoveries CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

D3 Discoveries. Can the interpretation of how a model evolves
help identify training problems and provide insights for ad-
dressing them, advancing prior work that focuses on interpret-
ing and fixing models post-training [13]? For example, can we
help determine if a model’s training is on the right track and
if interventions are necessary to improve accuracy? (Sec 4.5)

3.2 General Interpretation of Concept Evolution

We desire an interpretation of model evolution that is comparable
across different models. However, direct comparison between con-
cepts in different models at different training stages is challenging.
Different models are independently trained; thus, the learned con-
cepts are not aligned by default. Even for the samemodel, activation
patterns can change considerably over training epochs.

To address this challenge, we propose a two-step method. In
step 1, we create a base semantic space that captures the concepts
identified by a base model at a specific training epoch. This semantic
space serves as a fundamental reference for concept representation.
In step 2, we project the concepts from other models spanning
all epochs onto the base semantic space, resulting in a unified

semantic space where similar concepts across different models
and epochs are mapped to similar locations.

We choose an optimally, fully trained model as our base model
to ensure broad concept coverage. For example, we used a fully
trained VGG19 [49] as the base model for Fig 1 and 2.

Step 1: Creating the base semantic space. To create the base
semantic space, we use neurons as a unit to identify and represent
concepts, inspired by studies that demonstrate neurons’ selective
activation for specific concepts [13, 35, 56]. By using neurons, we
can pinpoint areas of interest in models, enabling focused trou-
bleshooting, particularly in identifying abnormal training patterns
within specific groups of neurons. Building on prior work [37], we
embed neurons that strongly respond to common inputs in simi-
lar locations. As neuron-concept relationships may not always be
one-to-one [10, 34], we aim to generalize to many-to-many relation-
ships. For example, polysemantic neurons responsive to multiple
concepts are embedded between those concepts.

Step 1.1: Finding stimuli. ConceptEvo creates stimuli for each
neuron by collecting a set of 𝑘 images that result in the highest
maximum in the neuron’s activation map. For neurons associated
with a single concept, their stimuli will be more alike, while for pol-
ysemantic neurons, their stimuli may consist of multiple concepts.

Step 1.2: Sampling frequently co-activated neuron pairs.

ConceptEvo creates a multiset 𝐷 , which consists of sampled pairs
of strongly co-activated neurons from the base model 𝑀𝑏 at epoch
𝑡𝑏 . First, for each image x, it creates a list of neurons that are strongly
co-activated by x, by collecting neurons with x in their stimuli. Next,
it randomly shuffles each list of co-activated neurons and samples
neuron pairs using a sliding window of length two over the shuffled
neurons. The sampled neuron pairs are added to 𝐷 . This sampling
process is repeated 𝐸 times to obtain diverse neuron pairs. Note that
a specific neuron pair can appear multiple times in 𝐷 , with their
frequency of appearance increasing as more images are shared by
their stimuli. This leads to a closer embedding of more frequently
co-activated neurons in the unified semantic space.

Step 1.3: Learning neuron embedding. The objective func-
tion, defined by Eq (1), represents a negative log likelihood to learn

neuron embeddings; intuitively, (1) co-activated neuron pairs with
a larger inner product (and spatially closer embeddings) are more
likely to indicate similar concepts, while (2) randomly paired neu-
rons with a lower inner product) and spatially farther embeddings)
are less likely to be conceptually similar. The randomly paired
neurons serve as negative examples, enabling high-quality vec-
tor representations of concepts, similar to the negative sampling
approach used in Word2Vec algorithm [31, 32]. This neuron em-
bedding approach allows for the representation of many-to-many
relationships between neurons and concepts. For example, a poly-
semantic neuron, which is co-activated by multiple distinct groups
of neurons representing different concepts, is attracted towards
these groups, resulting in its spatial location between them. In the
objective function, v𝑡

𝑛,𝑀
is an embedding of neuron 𝑛 in model𝑀

at epoch 𝑡 . 𝑟 is a randomly selected neuron. 𝑅 is the number of
randomly sampled neurons for each co-activated neuron pair in 𝐷 .
𝜎 (·) is the sigmoid function (i.e., 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥)).

𝐽1 = −
∑︁

(𝑛,𝑚) ∈𝐷

(
log

(
𝜎 (v𝑡𝑏

𝑛,𝑀𝑏
· v𝑡𝑏

𝑚,𝑀𝑏
)
)
+

𝑅∑︁
𝑟=1

log
(
1 − 𝜎 (v𝑡𝑏

𝑛,𝑀𝑏
· v𝑡𝑏

𝑟,𝑀𝑏
)
)
+

𝑅∑︁
𝑟=1

log
(
1 − 𝜎 (v𝑡𝑏

𝑚,𝑀𝑏
· v𝑡𝑏

𝑟,𝑀𝑏
)
))
(1)

We randomly initialize the neuron embeddings and learn the em-
beddings by gradient descent. Eq (2) and (3) present the derivative
to update the neuron embeddings.
𝜕𝐽1

𝜕v𝑡𝑏
𝑛,𝑀𝑏

= (1 − 𝜎 (v𝑡𝑏
𝑛,𝑀𝑏

· v𝑡𝑏
𝑚,𝑀𝑏

))v𝑡𝑏
𝑚,𝑀𝑏

−
𝑅∑︁
𝑟=1

𝜎 (v𝑡𝑏
𝑛,𝑀𝑏

· v𝑡𝑏
𝑟,𝑀𝑏

) v𝑡𝑏
𝑟,𝑀𝑏

(2)
𝜕𝐽1

𝜕v𝑡𝑏
𝑚,𝑀𝑏

= (1 − 𝜎 (v𝑡𝑏
𝑛,𝑀𝑏

· v𝑡𝑏
𝑚,𝑀𝑏

)) v𝑡𝑏
𝑛,𝑀𝑏

−
𝑅∑︁
𝑟=1

𝜎 (v𝑡𝑏
𝑚,𝑀𝑏

· v𝑡𝑏
𝑟,𝑀𝑏

) v𝑡𝑏
𝑟,𝑀𝑏

(3)
Step 2: Unifying the semantic space of different models at

different epochs.

Step 2.1: Image embedding. Different models, with varied
architectures and neurons, can share the commonality of being
trained on the same dataset. Leveraging this, we consider that if two
neurons from different models are strongly activated by the same
inputs, they likely detect the same concept. To represent neurons’
concepts across models, we use image embeddings as a bridge: we
compute image embeddings that approximate the original neuron
embeddings in the base model, and these image embeddings are
then used to approximate the neuron embeddings in other models.

A neuron’s embedding typically represents a more detailed con-
cept (e.g., car wheel as shown in Fig 1) extracted from the entire
images (e.g., car images) that include various concepts (e.g., car
wheels, loads, and more). Thus, we consider that collective embed-
dings of neurons can approximate the image embedding. Similarly,
we assume that a neuron’s embedding can be formed by collectively
considering the embeddings of images to which the neuron strongly
responds, In particular, we aim to encode a common concept (e.g.,
car wheel) across the stimuli (e.g, car images) into the neuron’s
embedding. To approximate a neuron’s embedding, we consider
linearly combining the embeddings of the stimuli of the neuron,
reinforcing the common concepts (e.g., car wheel) by summing

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Park et al.

the shared features encoded in the image embeddings. Unrelated
concepts (e.g., backgrounds or different colors of cars) which may
occur randomly and vary in presence (or absence) across stimuli
can be disregarded by summing and zeroing out such unrelated
concepts’ (positive and negative) contributions. To aggregate the
embeddings, we adopt the standard practice of averaging across the
important images as in previous seminar work [12, 13, 19]. Eq (4)
presents the neuron embedding approximation, where 𝑋 𝑡𝑏

𝑛,𝑀𝑏
is the

set of stimuli of neuron 𝑛 in the base model𝑀𝑏 at epoch 𝑡𝑏 .

v′𝑡𝑏
𝑛,𝑀𝑏

=
1

|𝑋 𝑡𝑏
𝑛,𝑀𝑏

|

∑︁
x∈𝑋 𝑡𝑏

𝑛,𝑀𝑏

vx (4)

Eq (5) presents the objective function to minimize the difference
between the original and the approximated embedding of neurons
in the base model, where 𝑁𝑀𝑏

is a set of all neurons in the base
model. We randomly initialize the image embeddings and learn
them by gradient descent. Eq (6) shows the derivative used to update
an image’s embedding, where 𝑁𝑀𝑏 ,x is the set of neurons in 𝑀𝑏

whose stimuli includes an input x.

𝐽2 =
1
2

∑︁
𝑛∈𝑁𝑀𝑏

��������v′𝑡𝑏𝑛,𝑀𝑏
− v𝑡𝑏

𝑛,𝑀𝑏

��������2
2

(5)

𝜕𝐽2
𝜕vx

=
∑︁

𝑛∈𝑁𝑀𝑏,x

1
|𝑋 𝑡𝑏

𝑛,𝑀𝑏
|

(
v′𝑡𝑏
𝑛,𝑀𝑏

− v𝑡𝑏
𝑛,𝑀𝑏

)
(6)

The image embedding approach may have a limitation as it can
only represent images from the top-𝑘 stimuli of neurons in the base
model. Consequently, if none of the images in a neuron’s stimuli are
not covered by the base model, the neuron itself remains unrepre-
sented. With a large number of images, the top-𝑘 sets of stimuli for
two models may have a low chance of overlapping. To address this
issue, we use a randomly sampled images (10% sampled) instead of
using all of them to increase the chance of overlapping. Addition-
ally, we indirectly represent images that are not covered by the base
model’s stimuli by adopting a similar approach as in Step 1; instead
of representing neurons based on their co-activation by common
images, we represent images based on how they make common
neurons co-activated. For each image x, ConceptEvo identifies the
𝑘 most activated neurons by x, denoted as 𝑁 𝑡𝑏

𝑀𝑏 ,x
. Images x1 and x2

are paired if there are common neurons in 𝑁
𝑡𝑏
𝑀𝑏 ,x1

and 𝑁
𝑡𝑏
𝑀𝑏 ,x2

. The
paired images are added to the multiset of image pairs denoted as
𝑆 . Image pairs in 𝑆 may appear more than once (i.e., 𝑆 is a multiset),
indicating that those images can stimulate more common neurons,
leading to a closer embedding. The image embeddings are learned
in a similar manner to the neuron embedding approach, with the
embeddings for images that are already represented by the base
model being fixed.

Step 2.2: Approximating embedding of neurons in other

models at different epochs. After embedding images in Step 2.1,
ConceptEvo approximates neuron embeddings of other models
at other epochs by averaging the embedding of images in each
neuron’s stimuli that are covered by the base model. If none of
the images in a neuron’s stimuli are covered by the base model, it
averages the indirectly derived image embeddings. Step 2.2 is the
only necessary (sub)step when projecting concepts in a new model

onto the unified semantic space. There is no need to repeat Step 1
and Step 2.1.

To visualize the neuron embeddings, we use UMAP, a non-linear
dimensionality reduction method that preserves both the global
data structures and local neighbor relations [29]. To assist in un-
derstanding the concepts that neurons strongly respond to, we
compute example patches which are cropped images that maxi-
mally activate the neuron (e.g., example patches of neurons for the
“dog face” concept in Fig 1) [35].

3.3 Concept Evolutions Important for a Class

Our objective, as discussed in D2, is to uncover crucial concept evo-
lutions that impact class predictions. For example, how important
is the evolution of a neuron’s concept (e.g., from “furry animals’
eyes” to “human neck”) to the prediction for a class (e.g., “bow tie”)?
Inspired by [19], we quantify the significance of a concept evolution
by evaluating how sensitive a class prediction is to the evolutionary
state of the concepts.

Eq (8) defines such sensitivity of the class 𝑐 prediction with
respect to the concept evolution of neuron 𝑛 in layer 𝑙 in model𝑀 ,
from epoch 𝑡 to 𝑡 ′, given an input x.𝑍 𝑡

𝑙,𝑀
(x) is the activation map of

all neurons in 𝑙 at 𝑡 for x. The function ℎ𝑡
𝑙,𝑀,𝑐

(·) : Rℎ𝑙×𝑤𝑙×𝑠𝑙 → R
takes 𝑍 𝑡

𝑙,𝑀
(x) as input and provides the logit value for class 𝑐 ,

where ℎ𝑙 ,𝑤𝑙 , and 𝑠𝑙 are height, width, and the number of neurons
in 𝑙 , respectively. Δ𝑍 𝑡,𝑡 ′

𝑛,𝑙,𝑀
(x) is the activation change of 𝑛 from 𝑡

to 𝑡 ′, as defined in Eq (7), where 0𝑎,𝑏 is a zero matrix of 𝑎 rows
and 𝑏 columns. The directional derivative in Eq (8) indicates how
sensitively a prediction for class 𝑐 would change if the activation
in layer 𝑙 changes towards the direction of neuron 𝑛’s evolution.
A positive value indicates that the concept evolution of neuron 𝑛

positively contributes to the prediction for class 𝑐 .

Δ𝑍 𝑡,𝑡 ′

𝑛,𝑙,𝑀
(x) = [0ℎ𝑙 ,𝑤𝑙

, · · · , 𝑍 𝑡 ′

𝑛,𝑙,𝑀
(x) − 𝑍 𝑡

𝑛,𝑙,𝑀
(x)︸ ︷︷ ︸

𝑛-th matrix

, · · · , 0ℎ𝑙 ,𝑤𝑙
] (7)

𝑆
𝑡,𝑡 ′

𝑛,𝑙,𝑀,𝑐
(x)

= lim
𝜖→0

ℎ𝑡
𝑙,𝑀,𝑐

(
𝑍 𝑡
𝑙,𝑀

(x) + 𝜖Δ𝑍 𝑡,𝑡 ′

𝑛,𝑙,𝑀
(x)

)
− ℎ𝑡

𝑙,𝑀,𝑐

(
𝑍 𝑡
𝑙,𝑀

(x)
)

𝜖

= ∇ℎ𝑡
𝑙,𝑀,𝑐

(𝑍 𝑡
𝑙,𝑀

(x)) · Δ𝑍 𝑡,𝑡 ′

𝑛,𝑙,𝑀
(x)

(8)

We finally measure the importance of concept evolution of a
neuron 𝑛 in layer 𝑙 in model 𝑀 from epoch 𝑡 to 𝑡 ′ for class 𝑐 , by
aggregating the importance across class 𝑐 images, as in Eq (9), where
𝑋𝑐 is the set of images labeled as 𝑐 .

𝐼
𝑡,𝑡 ′

𝑛,𝑙,𝑀,𝑐
=

|{x ∈ 𝑋𝑐 : 𝑆
𝑡,𝑡 ′

𝑛,𝑙,𝑀,𝑐
(x) > 0}|

|𝑋𝑐 |
(9)

Fig 3 illustrates important concept evolutions for the “bow tie”
class discovered by ConceptEvo, such as evolutions from abstract
concepts to “hand,” “neck,” and “face” concepts. Surprised by the
many evolutions towards human-related concepts, we inspected
the raw images for the bow tie class and found that the majority of
the images (over 70%) depict a person wearing a bow tie.

Concept Evolution in Deep Learning Training:
A Unified Interpretation Framework and Discoveries CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 3: ConceptEvo identifies and quantifies important

concept evolutions for class prediction. For example, in a

VGG16, it discovers that concepts evolving towards human-

related attributes, such as “orange circles” → “hand” in the

top row, are important for the “bow tie” class. The importance

score for this evolution is 0.92, meaning that such a concept

evolution enhances predictions for 92% of bow tie images.

3.4 Runtime and Time Complexity

We designed ConceptEvo with a focus on practicality, considering
the need for real-time interpretation during model training. To
ensure this, we aimed to keep the runtime of our approach shorter
than a single training epoch, allowing simultaneous training and
interpretation. Our approach meets this requirement. Below, we
report the runtime of ConceptEvo when using an NVIDIA A6000
GPU with 40GB RAM and the 10% randomly sampled ImageNet
dataset [45] with 120 K images.

In the two-step concept evolution interpretation method of Con-
ceptEvo (described in Sec. 3.2), Step 1, which creates the base
semantic space, completes in less than 30 minutes. Step 2, which
unifies the semantic space of models across epochs, takes less than
3 hours for Step 2.1 (image embedding) and less than 1 hour for Step
2.2 (identifying stimuli of a non-base model and approximating the
embedding of its neurons).

Step 2.2 (∼1 hour) is the only procedure that needs to be per-
formed when projecting concepts in a new model onto the unified
semantic space, and its runtime is shorter than training a model
for an epoch (e.g., ConvNeXt takes 1.56 hours). This means that
ConceptEvo’s interpretation can be performed concurrently with
model training. Step 1 (∼30 minutes) and Step 2.1 (∼3 hours) are
one-time computations that can be reused, making ConceptEvo a
practical and efficient choice.

3.4.1 General Interpretation of Concept Evolution (Sec. 3.2). Now,
we provide a detailed analysis of the time complexity of Con-
ceptEvo’s two-step concept evolution interpretation method de-
scribed in Section 3.2. The “steps” mentioned here correspond to
the steps outlined in Section 3.2.

Step 1: Creating the base semantic space. Step 1 has an overall
time complexity of 𝑂 (|𝑁𝑀𝑏

| · |𝐼 |), where 𝑁𝑀𝑏
is the set of neurons

in𝑀𝑏 , and 𝐼 is the set of images.
In Step 1.1, the time complexity is𝑂 (|𝑁𝑀𝑏

| · |𝐼 |). For each neuron,
collecting the top 𝑘 images from |𝐼 | images takes 𝑂 (|𝐼 | · 𝑘). This
process involves maintaining a sorted list of length 𝑘 , which stores
the top-𝑘 images observed so far. At each iteration for an image
x, we compare x to the smallest top-𝑘 item in the list. If x results

in a higher activation for the neuron, we insert x into the list and
remove the previous smallest top-𝑘 item. Identifying the proper
spot to insert x and inserting it (if necessary) takes 𝑂 (𝑘), and 𝑘 is
small (e.g., 10). Thus, the total time for collecting the top 𝑘 images
from |𝐼 | images is 𝑂 (|𝐼 | · 𝑘) = 𝑂 (|𝐼 |). Therefore, for all neurons,
Step 1.1 has a time complexity of 𝑂 (|𝑁𝑀𝑏

| · |𝐼 |).
In Step 1.2, the time complexity is 𝑂 (|𝑁𝑀𝑏

|). Step 1.2 consists
of two sub steps. First, for each image x, collecting neurons with x
in their stimuli takes 𝑂 (|𝑁𝑀𝑏

|), as it requires iterating through all
stimuli of all neurons, which is a total of 𝑂 (𝑘 · |𝑁𝑀𝑏

|). Second, for
each image x and its corresponding co-activated neurons, sampling
neuron pairs from the list of co-activated neurons with the sliding
window takes 𝑂 (𝑘 · |𝑁𝑀𝑏

|) = 𝑂 (|𝑁𝑀𝑏
|). This results in 𝑂 (|𝑁𝑀𝑏

|)
pairs of neurons. The sampling process is repeated 𝐸 times, thus
the total time for Step 1.2 is 𝑂 (𝐸 · (|𝑁𝑀𝑏

| + |𝑁𝑀𝑏
|)) = 𝑂 (|𝑁𝑀𝑏

|).
Step 1.3 takes 𝑂 (|𝑁𝑀𝑏

|), as the number of generated neuron
pairs in Step 1.2 is 𝑂 (|𝑁𝑀𝑏

|). One epoch of gradient descent in
Step 1.3 takes 𝑂 (|𝑁𝑀𝑏

| · 𝑅) = 𝑂 (|𝑁𝑀𝑏
|) , resulting in a final time

complexity of 𝑂 (|𝑁𝑀𝑏
|).

Overall, the time complexity of Step 1 is𝑂 (|𝑁𝑀𝑏
|·|𝐼 |) +𝑂 (|𝑁𝑀𝑏

|)+
𝑂 (|𝑁𝑀𝑏

|) =𝑂 (|𝑁𝑀𝑏
| · |𝐼 |). One advantage of this approach is its lin-

ear time complexity with respect to the number of neurons, instead
of quadratic time. This is because it avoids the need to compare
and represent concepts for all pairs of neurons, and instead focuses
on sampled pairs of neurons.

Step 2: Unifying the semantic space. Overall, Step 2 has a
time complexity of 𝑂 (|𝑁𝑀𝑏

| · |𝐼 |). In Step 2.1, the time complexity
is 𝑂 (|𝑁𝑀𝑏

| · |𝐼 |). This is because optimizing 𝐽2 takes 𝑂 (|𝐼 |) time
to learn 𝑂 (|𝐼 |) vectors, and approximately representing images
not covered by the base model’s stimuli also takes 𝑂 (|𝑁𝑀𝑏

| · |𝐼 |),
similar to Step 1 (since it adapts Step 1). To represent the concepts
of neurons in a non-base model 𝑀 within the unified semantic
space, Step 2.2 takes 𝑂 (|𝑁𝑀 | · |𝐼 |). This step involves computing
stimuli for each neuron in𝑀 , where 𝑁𝑀 is the neurons in𝑀 , using
a similar approach as in Step 1.1.

3.4.2 Concept Evolution Important for a Class (Sec. 3.3). Finding
important concept evolutions for each class 𝑐 requires𝑂 (|𝐼 | · |𝑁𝑀𝑏

|)
time, since the computation of neuron sensitivity (Eq (8)) relies
on the number of images labeled as 𝑐 (which is 𝑂 (|𝐼 |)). In terms
of runtime, on average, this process took 37 minutes for VGG16,
InceptionV3, and ConvNeXt models.

4 EXPERIMENT

We evaluate how well ConceptEvo satisfies the desired properties
for interpreting concept evolution (Sec 3.1, D1-3) by addressing the
following research questions:
Q1 Alignment.How effectively does ConceptEvo align concepts

of different models at different training stages in the unified
semantic space? (Sec 4.2, for D1)

Q2 Meaningfulness. To what extent are the discovered concept
evolutions semantically meaningful? (Sec 4.3, for D1)

Q3 Importance. How important are the discovered concept evo-
lutions in terms of their impact on class prediction? (Sec 4.4,
for D2)

Q4 Discoveries. How does ConceptEvo contribute to the discov-
ery of insightful findings? (Sec 4.5, for D3)

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Park et al.

4.1 Experiment Settings

Datasets and models.We examine concept evolutions in repre-
sentative image classifiers trained on ILSVRC2012 (ImageNet) [45].
The models we investigate include a modern model, such as Con-
vNeXt [27] which draws inspiration from recent architectures such
as ResNet [53], ResNeXt [54], and vision transformers [21, 26].
Additionally, we investigate classic models such as VGG16 [49],
VGG19 [49], VGG16 without dropout layers [51], and InceptionV3
[52]. To ensure comparable accuracies, we trained these models
using the hyperparameters reported in prior work [27, 49, 52].

Hyperparameter settings. We selected hyperparameters to
achieve the overarching goal of a unified semantic space that bal-
ances strong coherence among neighboring neurons with compu-
tation efficiency. Specifically, the following hyperparameters were
tested within the indicated ranges: the number of stimuli per neu-
ron (𝑘) was tested from 5 to 30, with a chosen value of 10 to strike
the balance; the dimension of neuron and image embeddings was
set to 30 (tested from 5 to 100); the learning rate for neuron em-
bedding was set to 0.05 and for image embedding, it was set to 0.1
(tested from 0.001 to 0.5); and the number of randomly sampled
neurons per neuron pair (𝑅) was set to 3 (tested from 0 to 5).

4.2 Alignment of Neuron Embeddings

To ensure the effectiveness of ConceptEvo in aligning concepts
across models and epochs, we conducted a large-scale human eval-
uation using Amazon Mechanical Turk (MTurk), following the
methodology of prior work [12, 37]. The evaluation focused on four
categories: (1) hand-picked sets of neurons representing similar
concepts, which served as a baseline; (2) neuron groups detected
by ConceptEvo from the base model (a well-trained VGG16); (3)
neuron groups in the same model at different training epochs, de-
tected by ConceptEvo; (4) neuron groups from different models at
different epochs, detected by ConceptEvo. To collect the neuron
groups, we applied K-means clustering on the neuron embeddings
within the unified semantic space.

We conducted concept classification tasks with 260 MTurk par-
ticipants, where each participant completed nine unique tasks. Each
task consisted of six neurons presented in random order, where
five of them had similar concepts identified by ConceptEvo or
were hand-picked, while one neuron served as a randomly selected
“intruder” neuron. To help participants understand the concept of
each neuron, we provided nine example image patches. Participants
were not informed about the potential presence of intruders and
were asked to select as many neurons as they believed to be seman-
tically similar. They were also asked to provide a brief description
of the concept they perceived. This process, as illustrated in Fig 4,
essentially forms a classification task, treating the participants as
classifiers and the grouped neurons as true labels. A total of 10,950
individual classification tasks were generated for the test set. From
this framing, we consider success based on the level of agreement
of participants with the model’s determination. Fig 5 shows an
ROC curve with the participants’ determinations, demonstrating
the high discernibility and alignment of ConceptEvo-detected con-
cepts. Even when sampling concepts across different epochs and
models, the AUC scores remain consistently high, ranging from
0.90 for sampling within the base model to 0.86 for sampling across
different models and training epochs.

Figure 4: MTurk questionnaire example. Participants are

presented with six neurons’ example patches and asked to

determine if they are a semantically coherent group. If they

identify a coherent group, they provide a short label for that

group. In the provided example, the first five neurons are

semantically similar, detected and grouped by ConceptEvo.

The rightmost is randomly sampled and unrelated to others.

Here, a participant correctly identifies the first four neurons

as a coherent “dogs” concept (four true positives), misses the

fifth neuron (one false negative), and correctly identifies the

intruder as unrelated (one true negative).

Hand PickedAUC .98

AUC .90 Base Model
AUC .89 Same Model in

Diff. Epochs
AUC .86

Random
True
Positive
Rate

False Positive Rate

.50

1.00

1.0

Diff. Models in
Diff. Epochs

Figure 5: ROC Curve for human estimations demonstrating

the high alignability of concepts discovered by ConceptEvo,

even when sampled across different models and epochs.

4.3 Meaningfulness of Concept Evolution

Concepts discovered by ConceptEvo should be meaningful and
informative to humans. We evaluate the interpretive consistency of
the concepts labeled and described by the participants, as shown
in Fig 4. To handle variations in phrasing for the labels, we use
sentence-level embeddings from the Universal Sentence Encoder
(USE) [4]. USE captures the semantic similarity between phrases,
such as “vehicle wheels,” “cars,” and “trucks”, which should have
high USE similarity. To establish a baseline for similarity, we cal-
culate the average pairwise similarity between all labels, resulting
in a value of 0.28. Subsequently, we measure the average pairwise
similarity between the labels provided by participants for individual
concepts within each category from 4.2. The results are as follows:
(1) the average concept similarity for hand-picked concepts is 0.455,
(2) the average concept similarity for concepts from the base model
is 0.40, (3) the average concept similarity for concepts within the
same model but different epoch is 0.40, and (4) the average concept
similarity for concepts from different models and different epochs is
0.38. All of these values significantly exceed the baseline similarity
value of 0.28. This indicates that the concepts discovered through
ConceptEvo are reliable and meaningful, even when assessed by
different people.

Concept Evolution in Deep Learning Training:
A Unified Interpretation Framework and Discoveries CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 6: ConceptEvo discovers concept evolutions impor-

tant for class predictions. For example, it discovers bird-

related evolutions important for the “Goldfinch” class in

InceptionV3, and dog-related evolutions important for the

“Shetland sheepdog” class in ConvNeXt. Some neurons be-

come increasingly specialized as training progresses. For ex-

ample, in the first row, a neuron that initially detects abstract

concept of dark background evolves to detect dark-eyed circle,
and then further evolves to detect head with a dark eye.

4.4 Concept Evolutions Important to a Class

ConceptEvo quantifies and identifies important concept evolu-
tions, as illustrated in Fig 6. In InceptionV3, it reveals evolutions
from abstract concepts to bird-related concepts that aid in classi-
fying the “Goldfinch” class. Similarly, in ConvNeXt, it discovers
evolutions from abstract concepts to dog-related concepts that are
important for classifying the “Shetland sheepdog” class. As training
progresses, some neurons become more specialized. For example, in
the first row of Fig 6, a neuron initially detecting abstract concepts
of a dark background evolves to detect a dark-eyed circle and later
to detect a head with a dark eye.

To evaluate the effectiveness of ConceptEvo in discovering im-
portant concept evolutions, we measure the changes in accuracy
when evolutions are reverted, similar to how prior work evaluated
concept importance in fully-trained models [12, 13]. By reverting
a neuron’s activation map from 𝑡 ′ to 𝑡 , we evaluate the prediction
accuracy at 𝑡 ′. A larger drop in accuracy indicates a higher impor-
tance for the concept evolution of that neuron. To determine the
stages of evolution to evaluate, we identify the epochs with the
closest top-1 training accuracies to the milestones of 25%, 50%, and
75%. Specifically, for VGG16, the evolution stages are 5→21 and
21→207; for InceptionV3, 1→11 and 11→121; and for ConvNeXt,
1→3 and 3→96.

As ConceptEvo measures the importance of concept evolution
for a single neuron (as defined in Eq 9), it is natural to evaluate
accuracy changes by reverting each neuron’s evolution individually
and then aggregating the changes. However, due to the large num-
ber of neurons, this approach becomes computationally prohibitive.

Figure 7: We evaluate the ability of ConceptEvo to quantify

and identify important concept evolutions for 100 randomly

selected classes. Neurons are ranked based on their evolution

importance and then divided into four bins: 0-25th (most

important), 25-50th, 50-75th, 75-100th percentiles. By revert-

ing higher-importance evolutions, we observed a larger drop

in top-1 training accuracy, demonstrating the effectiveness

of ConceptEvo in quantifying and identifying important

concept evolutions. As a baseline, for comparison, we also

measured the accuracy drop when randomly reverting 25%

(i.e., the same number of neurons in each bin) evolutions,

which fell between the 25-50th and 50-75th percentile bins.

To address this, we propose a more practical approach that reverts
multiple evolutions in a layer at a time and aggregates the accuracy
changes across layers. The evaluation process consists of five steps
for each class 𝑐 and evolution stage from epoch 𝑡 to 𝑡 ′. Step 1: Sam-
ple 128 images for class 𝑐 , which corresponds to approximately 10%
of the total images for that class (around 1300 images). Step 2: Com-
pute the importance of concept evolutions for all neurons, using
Eq (9). Step 3: Rank the neurons in each layer based on their evolu-
tion importance and divide them into four importance bins: 0-25th
percentile (most important), 25-50th percentile, 50-75th percentile,
and 75-100th percentile. Step 4: Revert the evolutions of neurons
in each bin, compute the accuracy at epoch 𝑡 ′, and measure the

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Park et al.

accuracy changes compared to the non-reverted accuracy. Step 5:

Average the accuracy changes across layers to obtain the accuracy
changes for the four bins. To mitigate sampling bias in Step 1, we
repeat the above procedure five times independently. We average
the accuracy changes across 100 randomly selected classes from
the 1,000 classes in ImageNet2.

Fig 7 illustrates the impact of reverting evolutions in different im-
portance bins on the top-1 training accuracy of VGG16, InceptionV3,
and ConvNeXt. Notably, reverting higher-importance evolutions
(lower percentiles) results in larger accuracy drops, confirming the
effectiveness of ConceptEvo in quantifying and identifying impor-
tant concept evolutions. Interestingly, reverting the least important
evolutions (75-100th percentile) sometimes leads to increased accu-
racy. This suggests that the least important evolutions may interfere
with the corresponding class predictions. As a baseline, we reverted
25% randomly selected evolutions, resulting in an accuracy drop
between the 25-50th percentile and the 50-75th percentile. Further-
more, we evaluated the changes in the top-5 training, top-1 test, and
top-5 test accuracies when reverting evolutions in the same four
bins, reinforcing our key finding that reverting higher-importance
evolutions results in a larger accuracy drop.

4.5 Discovery

Incompatible hyperparameters harm concept diversity. Con-
ceptEvo’s aligned neuron concept embedding helps identify prob-
lems caused by incompatible hyperparameters and offer insights
into their impact on model performance. For example, in Fig 2b,
ConceptEvo reveals that a VGG16 suboptimally trained with an
excessively high learning rate3 exhibits a drastic accuracy drop over
training epochs. Early signs of problems, such as the “atrophying”
of neuron concepts that degrade concept diversity and only detect
lower-level concepts, become apparent even before the accuracy
reaches 0. The loss of diversity is so severe that it cannot be recov-
ered even with 40 additional training epochs. A similar pattern is
observed in a ConvNeXt model trained with a high learning rate4,
as shown in Fig 9a. In cases where the accuracy is low in VGG16 and
ConvNeXt, we observe a significant reduction in concept diversity,
especially in the last convolutional layers. For example, as seen
in Fig 8, almost all neurons in VGG16 and over 30% of neurons in
ConvNeXt predominantly detect “background” concepts.

In the case of an InceptionV3 unstably trained with a large learn-
ing rate5, ConceptEvo reveals a similar yet slightly different sce-
nario. As depicted in Fig 9b, the accuracy significantly drops at
epoch 70, but interestingly, it recovers after a few more epochs.
This recovery is likely due to the persistence of a large number
of concepts at epoch 70 and the increasing diversity of concepts,
despite the low accuracy.

These examples demonstrate that ConceptEvo can provide ac-
tionable insights to determine whether interventions, such as stop-
ping the training, might be beneficial. Severe damage to concept
diversity, as observed in Fig 2b and 9a, suggests that stopping the

2Standard deviations of the average accuracy changes across the classes between the
five runs are very low (e.g., 9.2e-5 for top-1 training accuracy and 2.1e-4 for top-1 test
accuracy, for the 21→207 evolution).
30.05, larger than an optimal learning rate 0.01 presented in prior work
40.02, larger than an optimal learning rate 0.004 used in prior work
51.5, larger than an optimal rate of 0.045 used in prior work

Figure 8: An example of “background” concept detected by

VGG16 andConvNeXt that are trainedwith overly large learn-

ing rates, when the accuracy is very low. In the last convolu-

tional layer in these models, a notable percentage (over 30%)

of neurons show exclusive intense activation in response to

backgrounds of images.

Figure 9: A suboptimally trained ConvNeXt and an unstably

trained InceptionV3 with large learning rate experience de-

creased concept diversity and convergence in certain regions

(e.g., right side to detect lower-level concepts), specifically

when these models’ training accuracies drop (as seen in the

second column). Interestingly, the training accuracy of Incep-

tionV3 recovers, because the concepts become more diverse

starting from epoch 70, showing a better recovery resilience.

training might be more beneficial, as the model is unlikely to re-
cover even with further epochs, compared to a better ability to
recover the concept diversity as depicted in Fig 9b.

To quantitatively study concept diversity, we use differential
entropy which measures the uncertainty in a continuous variable
[30]. We compute the differential entropy for each dimension of
neuron embeddings and average the values across the dimensions6.
Higher values indicate more diverse concepts. In a VGG16 subop-
timally trained with a large learning rate (Fig 2b), the differential
entropy decreases: 1.89→1.48→-1.80→-1.80 for epochs 3, 12, 13,
14, indicating a loss of concept diversity. Similarly, in a subopti-
mally trained ConvNeXt (Fig 9a), the differential entropy decreases:
1.83→1.64→1.59→1.52 for epochs 13, 14, 15, 16. In contrast, opti-
mally trained models show increasing differential entropy, indicat-
ing that concepts become more diverse over epochs. For example,
in an optimally trained VGG16 (Fig 2a), the differential entropy
increases: 1.10→1.90→2.06→2.09 for epochs 0, 5, 21, 207. In the

6We average the differential entropy across reduced 2D embeddings, instead of the
original dimension, since computing the differential entropy for some high dimensional
vectors leads to infinity.

Concept Evolution in Deep Learning Training:
A Unified Interpretation Framework and Discoveries CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

case of an unstably trained InceptionV3 (Fig 9b), the differential
entropy decreases until epoch 70 (lowest accuracy) and then re-
bounds: 1.82→1.32→1.54→1.80 for epochs 4, 70, 71, 100, indicating
that its concept diversity was initially damaged but later restored.

Overfitting slows concept evolution. Overfitting is a com-
mon issue in DNN training [7, 44]. Using ConceptEvo, we have
discovered that concepts in overfitted models evolve at a slower
pace, despite experiencing rapid increases in training accuracy. To
intentionally induce overfitting, we modified a VGG16 (Fig 2c) by
removing its dropout layers which are known to help mitigate
overfitting [51]. Additionally, we overfit a ConvNeXt model by set-
ting the weight decay of the AdamW optimizer to 0, reducing its
regularization effect [28]. These models are overfitted expectedly7.

We observed that overfitted models show slower concept evo-
lution compared to their corresponding well-trained models. To
increase the top-1 training accuracy from approximately 0.25 to
0.5 and from approximately 0.5 to 0.75, the neuron embeddings in
a well-trained VGG16 model (Fig 2a) move an average Euclidean
distance of 2.08e-4 and 2.90e-4, respectively. In contrast, the over-
fitted VGG16 model (Fig 2b) exhibits much slower movement, with
neuron embeddings only shifting by 1.94e-4 and 1.76e-4 for the
same accuracy increments. Similarly, for the well-trained ConvNeXt
model, raising the top-1 training accuracy from approximately 0.25
to 0.5 and from approximately 0.5 to 0.75 corresponds to neuron
embeddings moving an average distance of 1.49e-4 and 1.33e-4,
respectively. Conversely, the overfitted ConvNeXt model shows
slower movement, with neuron embeddings shifting by only 1.48e-4
and 1.27e-4 for the same accuracy increments.
4.6 Comparison with Existing Approaches

We compare ConceptEvo with existing methods for representing
evolving concepts. Existing methods are not optimized to capture
changes across epochs; they can only be applied to one epoch
at a time, independently of other epochs. In our comparison, we
consider NeuroCartography [37] and ACE [12]. ACE represents
concepts using image segments that activate a layer. We use the
final layer to follow the approach described in the original work. For
image segments, we use the Broden dataset [3]. For 2D visualization
of concepts, we use UMAP [29]. To ensure alignment across epochs,
we run UMAP for all epochs simultaneously, avoidingmisalignment
caused by independent epoch-based reduction.

The results show that ConceptEvo effectively aligns concepts
across epochs, while existing methods exhibit misalignment. In Fig
10a, the “car-related” concept neurons consistently appear at the
bottom in epochs 2, 5, and 207. In contrast, Fig 10b demonstrates
that the “car-related” neurons represented by NeuroCartography
exhibit flipping, rotation, and shifting across epochs. Similarly, Fig
10c shows that the “car-related” image segments represented by
ACE exhibit significant shifting as the concept space changes during
training.

5 CONCLUSION AND FUTUREWORK

ConceptEvo is a unified interpretation framework for DNNs that
reveals the inception and evolution of detected concepts during

7In VGG16, at epoch 30, its top-1 train, top-5 train, top-1 test, top-5 test accuracies are
0.99, 1, 0.37, 0.61, respectively. In ConvNeXt, at epoch 32, its top-1 train, top-5 train,
top-1 test, top-5 test accuracies are 0.94, 0.99, 0.57, 0.80, respectively.

Figure 10: We compare the representation of concepts in

VGG16 using ConceptEvo with existing methods. (a) The re-

sults show that ConceptEvo effectively aligns learned con-

cepts across training epochs, by projecting similar concepts

to similar embedding locations. (b) In contrast, concepts rep-

resented byNeuroCartography exhibit flipping, rotation, and

shifting across epochs, indicatingmisalignment. (c) Similarly,

concepts represented by ACE undergo significant shifting,

as the entire concept space (layer activation space) changes

during training, indicating misalignment as well.

training. Through both large-scale human experiments and quan-
titative analyses, we have showcased the effectiveness of Con-
ceptEvo in discovering concept evolutions that facilitate human
interpretation of model training across different models. This frame-
work not only aids in identifying potential training problems but
also provides guidance for interventions to achieve more stable and
effective training outcomes.

In our future work, we plan to expand the scope of our investi-
gation to include other types of models, such as object detectors,
reinforcement learning systems, and language models. Addition-
ally, we aim to enhance the alignment of concepts across different
models during training. Currently, our framework operates under
the assumption that an image can be represented by linear combi-
nations of various neurons. However, more complex relationships
may exist beyond linear associations. Thus, we aspire to improve
the concept alignment by considering these non-linear relation-
ships, enabling a more comprehensive and accurate representation
of concepts across different models.

6 ACKNOWLEDGMENTS

This work was supported in part by Cisco, DARPA GARD, J.P.
Morgan PhD Fellowship, NSF #2144194, gifts from Amazon, Avast,
Fiddler Labs, Bosch, Facebook, Intel, NVIDIA, Google, Symantec.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Park et al.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning. , 265–283 pages.

[2] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. 2019. A convergence
analysis of gradient descent for deep linear neural networks. International
Conference on Learning Representations (ICLR) (2019).

[3] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network dissection: Quantifying interpretability of deep visual representations.
Proceedings of the IEEE conference on computer vision and pattern recognition
(2017), 6541–6549.

[4] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018.
Universal sentence encoder for English. In Proceedings of the 2018 conference on
empirical methods in natural language processing: system demonstrations. 169–174.

[5] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K
Su. 2019. This looks like that: deep learning for interpretable image recognition.
Advances in neural information processing systems 32 (2019).

[6] Sunghyo Chung, Cheonbok Park, Sangho Suh, Kyeongpil Kang, Jaegul Choo, and
Bum Chul Kwon. 2016. ReVACNN: Steering convolutional neural network via
real-time visual analytics. In Future of interactive learning machines workshop at
the 30th annual conference on neural information processing systems (NIPS).

[7] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra.
2016. Reducing overfitting in deep networks by decorrelating representations.
The International Conference on Learning Representations (ICLR) (2016).

[8] Nilaksh Das, Haekyu Park, Zijie J Wang, Fred Hohman, Robert Firstman, Emily
Rogers, and Duen Horng Polo Chau. 2020. Bluff: Interactively Deciphering
Adversarial Attacks on Deep Neural Networks. IEEE Visualization Conference
(2020).

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20, 1 (2019), 1997–
2017.

[10] Ruth Fong and Andrea Vedaldi. 2018. Net2Vec: Quantifying and Explaining
How Concepts Are Encoded by Filters in Deep Neural Networks. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR. Computer Vision
Foundation / IEEE Computer Society, 8730–8738.

[11] Chuang Gan, Naiyan Wang, Yi Yang, Dit-Yan Yeung, and Alex G Hauptmann.
2015. Devnet: A deep event network for multimedia event detection and evidence
recounting. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2568–2577.

[12] Amirata Ghorbani, James Wexler, James Zou, and Been Kim. 2019. Towards
automatic concept-based explanations. Neural Information Processing Systems
(2019).

[13] Amirata Ghorbani and James Y Zou. 2020. Neuron shapley: Discovering the
responsible neurons. Advances in Neural Information Processing Systems 33 (2020),
5922–5932.

[14] Yash Goyal, Uri Shalit, and Been Kim. 2019. Explaining Classifiers with Causal
Concept Effect (CaCE). CoRR abs/1907.07165 (2019).

[15] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. 2018. A survey of methods for explaining black
box models. ACM computing surveys (CSUR) (2018).

[16] Sadaf Gulshad and Arnold Smeulders. 2020. Explaining with counter visual
attributes and examples. In Proceedings of the 2020 international conference on
multimedia retrieval. 35–43.

[17] Evan Hernandez, Sarah Schwettmann, David Bau, Teona Bagashvili, Anto-
nio Torralba, and Jacob Andreas. 2022. Natural Language Descriptions of
Deep Features. In International Conference on Learning Representations. https:
//openreview.net/forum?id=NudBMY-tzDr

[18] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2017. On large-batch training for deep learning:
Generalization gap and sharp minima. 5th International Conference on Learning
Representations, ICLR (2017).

[19] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda
Viegas, et al. 2018. Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (tcav). International conference on machine
learning (2018).

[20] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. International Conference on Machine Learning (2017).

[21] Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold,
Jakob Uszkoreit, Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil
Houlsby, Sylvain Gelly, Thomas Unterthiner, and Xiaohua Zhai. 2021. An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale.

[22] Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and
Marcin Detyniecki. 2019. The dangers of post-hoc interpretability: Unjustified
counterfactual explanations. International Joint Conference on Artificial Intelli-
gence (2019).

[23] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. 2018.
Visualizing the loss landscape of neural nets. Advances in neural information
processing systems 31 (2018).

[24] Mingwei Li, Zhenge Zhao, and Carlos Scheidegger. 2020. Visualizing neural
networks with the grand tour. Distill 5, 3 (2020), e25.

[25] Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, and Shixia Liu. 2017. Analyzing the
training processes of deep generative models. IEEE transactions on visualization
and computer graphics 24, 1 (2017), 77–87.

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 10012–10022.

[27] Zhuang Liu, Hanzi Mao, Chao-YuanWu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. 2022. A convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11976–11986.

[28] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[29] Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform man-
ifold approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

[30] Joseph Victor Michalowicz, Jonathan M Nichols, and Frank Bucholtz. 2013. Hand-
book of differential entropy. Crc Press.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[33] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. 2016. Multifaceted Feature
Visualization: Uncovering the Different Types of Features Learned By Each
Neuron in Deep Neural Networks. Visualization for Deep Learning workshop at
ICML (2016).

[34] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov,
and Shan Carter. 2020. Zoom in: An introduction to circuits. Distill 5, 3 (2020),
e00024–001.

[35] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. 2017. Feature visual-
ization. Distill 2, 11 (2017), e7.

[36] Nicolas Papernot and Patrick McDaniel. 2018. Deep k-nearest neighbors: Towards
confident, interpretable and robust deep learning. arXiv preprint arXiv:1803.04765
(2018).

[37] Haekyu Park, Nilaksh Das, Rahul Duggal, Austin P Wright, Omar Shaikh, Fred
Hohman, and Duen Horng Polo Chau. 2021. NeuroCartography: Scalable Au-
tomatic Visual Summarization of Concepts in Deep Neural Networks. IEEE
Transactions on Visualization and Computer Graphics (2021).

[38] Nicola Pezzotti, Thomas Höllt, Jan Van Gemert, Boudewijn PF Lelieveldt, Elmar
Eisemann, and Anna Vilanova. 2017. Deepeyes: Progressive visual analytics for
designing deep neural networks. IEEE transactions on visualization and computer
graphics 24, 1 (2017), 98–108.

[39] Michael Pühringer, Andreas Hinterreiter, and Marc Streit. 2020. InstanceFlow:
Visualizing the Evolution of Classifier Confusion at the Instance Level. In 2020
IEEE Visualization Conference (VIS). IEEE, 291–295.

[40] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. 2017.
Svcca: Singular vector canonical correlation analysis for deep learning dynamics
and interpretability. Advances in neural information processing systems 30 (2017).

[41] Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao, and Alexandru C Telea. 2016.
Visualizing the hidden activity of artificial neural networks. IEEE transactions on
visualization and computer graphics 23, 1 (2016), 101–110.

[42] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. 2019. On the convergence of
adam and beyond. arXiv preprint arXiv:1904.09237 (2019).

[43] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why should I trust
you?" Explaining the predictions of any classifier. ACM SIGKDD international
conference on knowledge discovery and data mining (2016).

[44] Leslie Rice, Eric Wong, and Zico Kolter. 2020. Overfitting in adversarially robust
deep learning. In International Conference on Machine Learning. PMLR, 8093–
8104.

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[46] Jakub Safarik, Jakub Jalowiczor, Erik Gresak, and Jan Rozhon. 2018. Genetic algo-
rithm for automatic tuning of neural network hyperparameters. In Autonomous
Systems: Sensors, Vehicles, Security, and the Internet of Everything, Vol. 10643. SPIE,
168–174.

[47] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. IEEE international conference on
computer vision (2017), 618–626.

https://openreview.net/forum?id=NudBMY-tzDr
https://openreview.net/forum?id=NudBMY-tzDr

Concept Evolution in Deep Learning Training:
A Unified Interpretation Framework and Discoveries CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

[48] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2013. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. arXiv preprint arXiv:1312.6034 (2013).

[49] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. International Conference on Learning
Representations (ICLR) (2015).

[50] Daniel Smilkov, Shan Carter, D Sculley, Fernanda B Viégas, and Martin Watten-
berg. 2017. Direct-manipulation visualization of deep networks. arXiv preprint
arXiv:1708.03788 (2017).

[51] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. IEEE
conference on computer vision and pattern recognition (2016).

[53] Sasha Targ, Diogo Almeida, and Kevin Lyman. 2016. Resnet in resnet: Generaliz-
ing residual architectures. arXiv preprint arXiv:1603.08029 (2016).

[54] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492–1500.

[55] Chih-Kuan Yeh, Been Kim, Sercan Ömer Arik, Chun-Liang Li, Tomas Pfister, and
Pradeep Ravikumar. 2020. On Completeness-aware Concept-Based Explanations
in Deep Neural Networks. In Advances in Neural Information Processing Systems

33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (Eds.).

[56] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015. Un-
derstanding neural networks through deep visualization. International Conference
on Machine Learning (ICML) Deep Learning Workshop (2015).

[57] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818–833.

[58] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2021. Understanding deep learning (still) requires rethinking generalization.
Commun. ACM 64, 3 (2021), 107–115.

[59] Quanshi Zhang, Wenguan Wang, and Song-Chun Zhu. 2018. Examining cnn rep-
resentations with respect to dataset bias. AAAI Conference on Artificial Intelligence
(2018).

[60] Wen Zhong, Cong Xie, Yuan Zhong, Yang Wang, Wei Xu, Shenghui Cheng, and
Klaus Mueller. 2017. Evolutionary visual analysis of deep neural networks. In
ICML Workshop on Visualization for Deep Learning. 9.

[61] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. 2018. Interpreting
deep visual representations via network dissection. IEEE transactions on pattern
analysis and machine intelligence 41, 9 (2018), 2131–2145.

[62] Zhiyan Zhou, Kevin Li, Haekyu Park, Megan Dass, Austin Wright, Nilaksh Das,
and Duen Horng Chau. 2022. NeuroMapper: In-browser Visualizer for Neural
Network Training. IEEE Visualization Conference (IEEE VIS) (2022).

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Desiderata of Interpreting Concept Evolution
	3.2 General Interpretation of Concept Evolution
	3.3 Concept Evolutions Important for a Class
	3.4 Runtime and Time Complexity

	4 Experiment
	4.1 Experiment Settings
	4.2 Alignment of Neuron Embeddings
	4.3 Meaningfulness of Concept Evolution
	4.4 Concept Evolutions Important to a Class
	4.5 Discovery
	4.6 Comparison with Existing Approaches

	5 Conclusion and Future Work
	6 Acknowledgments
	References

